Regression with Uncertainty

Introduction to Quantitative Social Science

Kosuke Imai Harvard University / University of Tokyo

Summer 2022

Linear Regression Model

Recall the model:

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i,$$

where $\mathbb{E}(\epsilon_i) = 0$ and $\mathbb{V}(\epsilon_i) = \sigma^2$

• Estimation of parameters via least squares:

minimize SSR where SSR =
$$\sum_{i=1}^{n} \hat{\epsilon}_i^2 = \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2$$

- Key Assumptions:
 - **1** Exogeneity: the mean of ϵ_i does not depend on x_i

$$\mathbb{E}(\epsilon_i \mid x_i) = \mathbb{E}(\epsilon_i) = 0$$

2 Homoskedasticity: the variance of ϵ_i does not depend on x_i

$$\mathbb{V}(\epsilon_i \mid x_i) = \mathbb{V}(\epsilon_i) = \sigma^2$$

- When is each assumption violated?
- There is an easy fix for heteroskedasticity but not for endogeneity

Statistical Properties of Least Squares

- Repeated hypothetical data generation:
 - **1** sample (y_i, x_i) according to the model
 - 2 equivalently sample (x_i, ϵ_i) and then construct y_i
 - 3 run regression and obtain $(\hat{\beta}_0, \hat{\beta}_1)$
 - repeat
- ullet Under exogeneity, \hat{eta}_0 and \hat{eta}_1 are unbiased
- Under the two assumptions, standard errors are unbiased
- 95% confidence intervals:

$$[\hat{\beta}_0 - z_{0.025} \cdot (\text{standard error of } \hat{\beta}_0), \, \hat{\beta}_0 + z_{0.025} \cdot (\text{standard error of } \hat{\beta}_0)]$$

 $[\hat{\beta}_1 - z_{0.025} \cdot (\text{standard error of } \hat{\beta}_1), \, \hat{\beta}_1 + z_{0.025} \cdot (\text{standard error of } \hat{\beta}_1)]$

- Hypothesis test: $H_0: \hat{\beta}_1 = \beta_1^*$
- test statistic: $\frac{\hat{\beta}_1 \mathbb{E}(\hat{\beta}_1)}{\sqrt{\mathbb{V}(\hat{\beta}_1)}} = \frac{\hat{\beta}_1 \beta_1^*}{\text{standard error of } \hat{\beta}_1} \stackrel{\text{approx.}}{\sim} \mathcal{N}(0,1)$
- Often, t-distribution is used

Recall the Study of Facial Apperance and Politics

Which person is the more competent?

- 2004 Wisconsin Senate Race
- Russ Feingold (D) 55% vs. Tim Micheles (R) 44%

Facial Competence and Vote Share

Competence scores for Democrats

```
##
## Call:
## lm(formula = diff.share ~ d.comp, data = face)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.675 -0.166 0.014 0.177 0.743
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -0.312 0.066 -4.73 6.2e-06 ***
## d.comp 0.660 0.127 5.19 8.9e-07 ***
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.266 on 117 degrees of freedom
## Multiple R-squared: 0.187, Adjusted R-squared: 0.18
   F-statistic: 27 on 1 and 117 DF p-value: 8 85e-07
Intro. to Quantitative Social Science Regression with Uncertainty Todai (Summer 2022)
                                                          6/13
```

Expected and Predicted Values

- Interpretation of β_1 : the average increase in Y_i associated with one unit increase in X_i
- Expected value: the average outcome given $X_i = x$
- Predicted value: the prediction of the outcome given $X_i = x$
- Point estimate: $\hat{\beta}_0 + \hat{\beta}_1 x$
- Standard error for expected value:

$$\sqrt{\mathbb{V}(\hat{\beta}_0 + \hat{\beta}_1 x)} = \sqrt{\mathbb{V}(\hat{\beta}_0) + 2x \operatorname{Cov}(\hat{\beta}_0, \hat{\beta}_1) + x^2 \mathbb{V}(\hat{\beta}_1)}$$

- Standard error for predicted value: $\sqrt{\mathbb{V}(\hat{\beta}_0 + \hat{\beta}_1 x) + \mathbb{V}(\epsilon)}$
- We can construct confidence intervals and conduct hypothesis testing in the same manner as before

```
predict(fit, newdata = data.frame(d.comp = c(0.1, 0.5, 0.9)),
       se.fit = TRUE)
## $fit
## 1 2 3
## -0.246 0.018 0.282
##
## $se.fit
## 1 2
## 0.0544 0.0245 0.0585
##
## $df
## [1] 117
##
```

residual.scale is the residual standard deviation

\$residual.scale

[1] 0.266

```
x.pred <-
    data.frame(d.comp = seq(from = 0.1, to = 0.9, by = 0.01))
pred <- predict(fit, interval = "confidence",</pre>
                newdata = x.pred
plot(face$d.comp, face$diff.share,
     xlim = c(0, 1), ylim = c(-1, 1),
     xlab = "Competence scores for Democrats",
     ylab = "Democratic margin in vote share",
     main = "Facial Competence and Vote Share")
lines(x.pred$d.comp, pred[, "fit"], col = "red")
lines(x.pred$d.comp, pred[, "lwr"], col = "red",
      ltv = "dashed")
lines(x.pred$d.comp, pred[, "upr"], col = "red",
      lty = "dashed")
```

Facial Competence and Vote Share

Competence scores for Democrats

Statistical Inference with Multiple Regression

- Correlation does not imply causation
- Omitted variables

 violation of exogeneity
- You can adjust for multiple confounding variables

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \cdots + \beta_p x_{ip} + \epsilon_i$$

- Interpretation of β_j : an increase in the outcome associated with one unit increase in x_{ij} when other variables take the same value
- Confidence intervals for $\hat{\beta}_j$, expected values, and predicted values can be constructed in the same manner
- Hypothesis testing for β_j , expected values, and predicted values, etc. can also conducted in the same manner

Electoral Costs of Iraq War Casualties

- Outcome: Change in Bush's vote share from 2000 to 2004
- Multiple regression from Karol and Miguel (*J. of Politics* 2007)
- The average number of casualties per 100,000 = 3.39

coef.	s.e.
-0.0055	0.0023
0.43	0.26
-0.29	0.20
-0.05	0.65
2.15	0.66
-0.35	0.60
-0.12	0.16
51	
0.41	
	-0.0055 0.43 -0.29 -0.05 2.15 -0.35 -0.12