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Random Variables and Probability Distributions

What is a random variable?: assigns a number to an event
1 Coin flip: head = 1 and tail = 0
2 Gambling: win = $100 and lose = −$10
3 Voting: vote = 1 and not vote = 0
4 Survey response: strongly agree = 4, agree = 3,

disagree = 2, and strongly disagree = 1

Race prediction example:
1 race: black = 1, white = 2, hispanic = 3, etc.
2 residence: lives in precinct 1 = 1, lives in precinct 2 = 2, etc.

Probability distribution: Probability of an event that a random variable
takes a certain value

P(race): P(race = 1), P(race = 2) etc.
P(race | residence): P(race = 1 | residence = 2) etc.
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Race Prediction Revisited

Surname data: P(surname), P(race | surname)
Demographic data: P(race | residence)
We want to compute: P(race | surname, residence)
Bayes’ rule:

P(race | surname, residence)

=
P(surname | race, residence)P(race | residence)

P(surname | residence)

Assumption: P(surname | race, residence) = P(surname | race)
Law of total probability:

P(surname | residence)
=

∑
race

P(surname | race, residence)P(race | residence)

=
∑
race

P(surname | race)P(race | residence)
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Probability Model as a Data Generating Process

1 Probability density function (PDF): f (x)
How likely does X take a particular value?
Probability mass function (PMF): When X is discrete,
f (x) = P(X = x)

2 Cumulative distribution function (CDF): F (x) = P(X ≤ x)

What is the probability that a random variable X takes a value equal to
or less than x?
Area under the density curve
Non-decreasing
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Binomial Distribution

PMF: for x ∈ {0, 1, . . . , n},

f (x) = P(X = x) =

(
n

x

)
px(1− p)n−x

CDF: for x ∈ {0, 1, . . . , n}

F (x) = P(X ≤ x) =
x∑

k=0

(
n

k

)
pk(1− p)n−k

Example: flip a fair coin 3 times
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People v. Collins Revisited

A purse snatching in which witnesses claimed to see a young women with
blond hair in a ponytail fleeing from the scene in a yellow car driven by a
black young man with a beard. A couple meeting the description was
arrested a few days after the crime, but no physical evidence was found.
The probability that a randomly selected couple would possess the
described characteristics was estimated to be about one in 12 million.
Faced with such overwhelming odds, the jury convicted the defendants.
Given that there was already one couple who met the description, what is
the conditional probability that there was also a second couple such as the
defendants?
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1 p: proportion of couples with the characteristics in the
2 n = 8 million: total number of couples in the population population
3 A: the event that at least one couple has the characteristics
4 B : the event that at least two couples have the characteristics
5 C : the event that exactly one couple has the characteristics

What is P(B | A)?
Compute P(A), P(C ), and then P(B | A).
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Normal Distribution

Normal distribution with mean µ and standard deviation σ
PDF:

f (x) =
1√
2πσ

exp

(
−(x − µ)2

2σ2

)
CDF (no simple formula. use R to compute it):

F (x) = P(X ≤ x) =

∫ x

−∞

1√
2πσ

exp

(
−(t − µ)2

2σ2

)
dt
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Regression Towards the Mean Revisited

Linear Regression Model:

yi = 15+ 0.8xi + εi

1 yi : Second take home exam score for student i (percent)
2 xi : First take home exam score for student i (percent)
3 εi : error term

Suppose εi is normally distributed with mean = 0 and s.d. = 5

Two group of students: x1 = 60 and x2 = 80
Which group of students is likely to do better in the final?

when compared with the other group
when compared with their own midterm score
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Examples Using Normal Distribution

If X and Y are normal random variables, then aX + bY is also
normally distributed with appropriate mean and variance

z-score:
Z =

X − E(X )√
V(X )

∼ N (0, 1)

Sum: Xi is independently distributed as N (E(X ),V(X ))
n∑

i=1

Xi ∼ N (nE(X ), nV(X ))

Sample mean:

X ∼ N
(
E(X ),

V(X )

n

)
Regression: Yi = −15+ 1.2Xi + εi with Xi ∼ N (60, 16) and
εi ∼ N (0, 25)

1 Yi ∼ N (57, 48.04)
2 Yi given Xi = 60 is ∼ N (57, 25)
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Law of Large Numbers

As the sample size increases, the sample average of a random variable
approaches to its expected value

X n =
1
n

n∑
i=1

Xi −→ E(X )

Example:
1 flip a coin 10 times and count # of heads
2 repeat it many times and compute the sample mean
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Do Beautiful People Have More Girls?

In Journal of Theoretical Biology,
1 “Big and Tall Parents have More Sons” (2005)
2 “Engineers Have More Sons, Nurses Have More Daughters” (2005)
3 “Violent Men Have More Sons” (2006)
4 “Beautiful Parents Have More Daughters” (2007)

314     American Scientist, Volume 97 © 2009 Sigma Xi, The Scientific Research Society. Reproduction 
with permission only. Contact perms@amsci.org.

The data are available for download 
at http://www.stat.columbia.edu/
~gelman/research/beautiful/

As of 2007, the 50 most beautiful 
people of 1995 had 32 girls and 24 
boys, or 57.1 percent girls, which is 
8.6 percentage points higher than 
the population frequency of 48.5 
percent. This sounds like good news 
for the hypothesis. But the standard 
error is 0.5/√(32 + 24) = 6.7 percent, 
so the discrepancy is not statistically 
significant. Let’s get more data. 

The 50 most beautiful people of 
1996 had 45 girls and 35 boys: 56.2 
percent girls, or 7.8 percent more 
than in the general population. 
Good news! Combining with 1995 
yields 56.6 percent girls—8.1 percent 
more than expected—with a stan-
dard error of 4.3 percent, tantaliz-
ingly close to statistical significance. 
Let’s continue to get some confirm-
ing evidence. 

The 50 most beautiful people of 
1997 had 24 girls and 35 boys—no, 
this goes in the wrong direction, let’s 
keep going…For 1998, we have 21 
girls and 25 boys, for 1999 we have 
23 girls and 30 boys, and the class 
of 2000 has had 29 girls and 25 boys. 
Putting all the years together and 

removing the duplicates, such as 
Brad Pitt, People’s most beautiful 
people from 1995 to 2000 have had 
157 girls out of 329 children, or 47.7 
percent girls (with a standard error 
of 2.8 percent), a statistically insig-
nificant 0.8 percentage points lower 
than the population frequency. So 
nothing much seems to be going on 
here. But if statistically insignificant 
effects were considered acceptable, 
we could publish a paper every two 
years with the data from the latest 
“most beautiful people.” 

Why Is This Important?
Why does this matter? Why are we 
wasting our time on a series of pa-
pers with statistical errors that hap-
pen not to have been noticed by a 
journal’s reviewers? We have two 
reasons: First, as discussed in the 
next section, the statistical difficul-
ties arise more generally with find-
ings that are suggestive but not sta-
tistically significant. Second, as we 
discuss presently, the structure of 
scientific publication and media at-
tention seem to have a biasing effect 
on social science research. 

Before reaching Psychology Today 
and book publication, Kanazawa’s 

findings received broad attention in 
the news media. For example, the 
popular Freakonomics blog reported,

A new study by Satoshi Kanaza-
wa, an evolutionary psychologist 
at the London School of Econom-
ics, suggests . . . there are more 
beautiful women in the world 
than there are handsome men. 
Why? Kanazawa argues it’s be-
cause good-looking parents are 
36 percent more likely to have a 
baby daughter as their first child 
than a baby son—which suggests, 
evolutionarily speaking, that 
beauty is a trait more valuable for 
women than for men. The study 
was conducted with data from 
3,000 Americans, derived from 
the National Longitudinal Study 
of Adolescent Health, and was 
published in the Journal of Theo-
retical Biology.

Publication in a peer-reviewed jour-
nal seemed to have removed all skepti-
cism, which is noteworthy given that 
the authors of Freakonomics are them-
selves well qualified to judge social 
science research. 

In addition, the estimated effect 
grew during the reporting. As noted 
above, the 4.7 percent (and not sta-
tistically significant) difference in the 
data became 8 percent in Kanazawa’s 
choice of the largest comparison (most 
attractive group versus the average of 
the four least attractive groups), which 
then became 26 percent when reported 
as a logistic regression coefficient, and 
then jumped to 36 percent for reasons 
unknown (possibly a typo in a news-
paper report). The funny thing is that 
the reported 36 percent signaled to us 
right away that something was wrong, 
since it was 10 to 100 times larger than 
reported sex-ratio effects in the bio-
logical literature. Our reaction when 
seeing such large estimates was not 
“Wow, they’ve found something big!” 
but, rather, “Wow, this study is under-
powered!” Statistical power refers to 
the probability that a study will find 
a statistically significant effect if one 
is actually present. For a given true ef-
fect size, studies with larger samples 
have more power. As we have dis-
cussed here, “underpowered” studies 
are unlikely to reach statistical signifi-
cance and, perhaps more importantly, 
they drastically overestimate effect 
size estimates. Simply put, the noise is 
stronger than the signal.

1995 1996 1997

1998 1999 2000

32 girls 24 boys

29 girls 25 boys

45 girls 35 boys

21 girls 25 boys

24 girls 35 boys

23 girls 30 boys

Figure 4. The authors performed a sex-ratio study of the offspring of the most beautiful people 
in the world as selected by People magazine between 1995 and 2000. The girls started strong in 
1995 with 32 girls to 24 boys. Girls continued strong in 1996. However, as the sample size grew, 
the ratio converged on the population frequency, concluding with 157 girls and 172 boys, or 
47.7 percent girls, approximately the same as the population frequency of 48.5 percent.

Gelman & Weakliem, American Scientist

Law of Averages in action
1 1995: 57.1%
2 1996: 56.6
3 1997: 51.8
4 1998: 50.6
5 1999: 49.3
6 2000: 50.0

No dupilicates: 47.7%
Population frequency: 48.5%
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Central Limit Theorem

What is the distribution of sample mean X n when X is not normally
distributed?
Polling example: repeated (often hypothetical) polls
The approximate (asymptotic) distribution of X n is still normal!
In particular, when n is large, we have

X n ∼ N
(
E(X ),

V(X )

n

)
Theorem: As the sample size increases, the distribution of the z-score
for the sample mean,

Z =
X n − E(X n)√

V(X )
=

X − E(X )√
V(X )/n

approaches to the standard Normal distribution N (0, 1)
Intro. to Quantitative Social Science Random Variables & Distributions Todai (Summer 2022) 13 / 14



Election Polls

Hypothetically repeated polls with sample size n

Xi = 1 if supports Obama, Xi = 0 if supports McCain
Probability model:

∑n
i=1 Xi ∼ Binom(n, p)

Obama’s support rate: X n =
∑n

i=1 Xi/n

LLN: X n −→ p as n tends to infinity

CLN: X n
approx.∼ N

(
0, p(1−p)n

)
for a large n

Margin of victory: δ = p − (1− p) = 2p − 1
Estimate: δ̂n = 2X n − 1
LLN: δ̂n −→ δ as n tends to infinity

CLN: δ̂n
approx.∼ N

(
0, 4p(1−p)

n

)
for a large n

Intro. to Quantitative Social Science Random Variables & Distributions Todai (Summer 2022) 14 / 14


	Title
	Random Variables
	Normal Distribution
	Law of Large Numbers
	Central Limit Theorem

