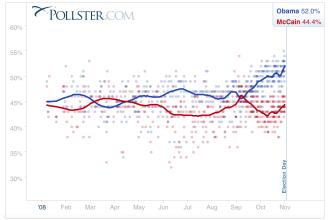
Electoral Polls and Prediction

Introduction to Quantitative Social Science

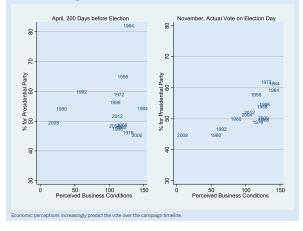

Kosuke Imai Harvard University / University of Tokyo

Summer 2022

1/24

2008 US Presidential Election

- A historic election \rightsquigarrow first African-American president
- $\bullet\,$ Barack Obama won 52.9% of the national votes while McCain won 45.7%

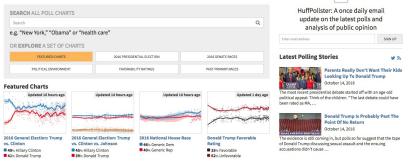

• Polls fluctuate early

Intro. to Quantitative Social Science

How Should We "Forecast" the Election Results?

Macro political and economic fundamentals for early forecasting

Predicting the Polls in April and the Vote in November from Economic Perceptions at Each Point in Time



Recent method: combine them with polls

Let's Analyze Some Polls

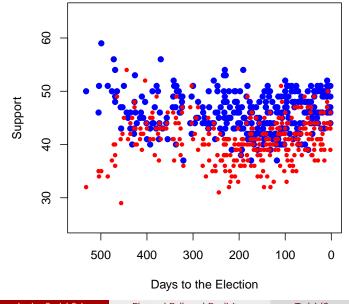
• R package pollstR scrapes the data from Huffington Post:

HuffPost Pollster tracks thousands of public polls to give you the latest data on elections, political opinions and more. Read our FAQ.

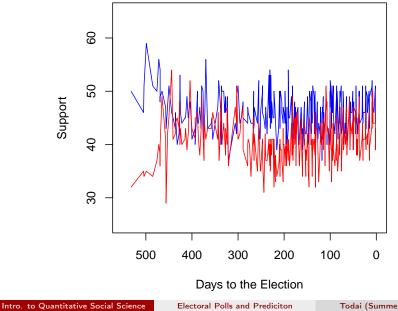
library(pollstR)
chart_name <- "2016-general-election-trump-vs-clinton"
polls2016 < pollster_charts_polls(chart_name)[["content"]]
Warning: replacing previous import
Intro. to Quantitative Social Science Electoral Polls and Prediciton Todai (Summer 2022)</pre>

4/24

```
polls2016 <- as.data.frame(polls2016)</pre>
names(polls2016)
## [1] "Trump"
                              "Clinton"
## [3] "Other"
                              "Undecided"
## [5] "poll_slug"
                              "survey_house"
## [7] "start_date"
                              "end date"
## [9] "question_text"
                              "sample_subpopulation"
## [11] "observations"
                              "margin_of_error"
## [13] "mode"
                              "partisanship"
## [15] "partisan_affiliation"
polls2016[1:3, c("Trump", "Clinton", "start_date", "end_date")]
##
    Trump Clinton start_date end_date
    43 46 2016-11-04 2016-11-06
## 1
## 2 39 44 2016-11-02 2016-11-06
## 3 43 47 2016-11-02 2016-11-06
```


Plotting Polls over Time

• Compute the days to the election variable:


```
class(polls2016$end_date)
## [1] "Date"
polls2016$DaysToElection <-
    as.Date("2016-11-8") - polls2016$end_date</pre>
```

• Plot polling results:

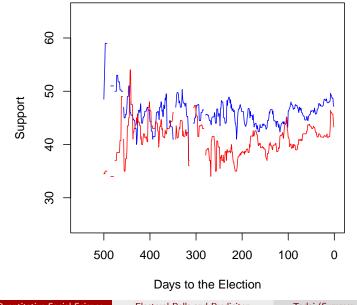
What's Wrong with this Plot?

Time-Series Plot Looks Even Worse

Smoothing over Time

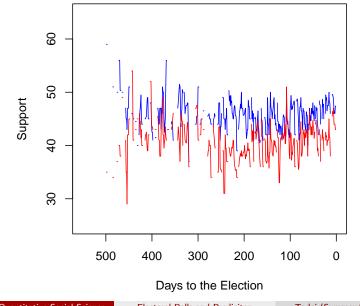
- Moving average: average polls within a one-week period
- For example, on October 17, we will take all polls conducted within the past week
- Window size: amount of smoothing
- Coding strategy: for each day, we subset the relevant polls and compute the average
- Range of the DaysToElection variable:

```
range(polls2016$DaysToElection)
## Time differences in days
## [1] 2 532
```

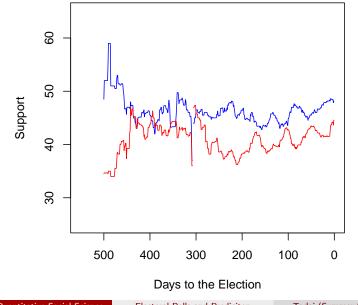

Plotting US Presidential Election Polls over Time

```
window <- 7
days <- 500:1
```

```
Clinton.pred <- Trump.pred <- rep(NA, length(days))
for (i in 1:length(days)) {
    week.data <-
        subset(polls2016,
               subset = ((DaysToElection < (days[i] + window))</pre>
                    & (DaysToElection >= days[i])))
    Clinton.pred[i] <- mean(week.data$Clinton)
    Trump.pred[i] <- mean(week.data$Trump)</pre>
}
plot(days, Clinton.pred, type = "1", col = "blue",
     xlab = "Days to the Election", ylab = "Support",
     xlim = c(550, 0), ylim = c(25, 65))
lines(days, Trump.pred, col = "red")
```


Intro. to Quantitative Social Science

1-Week Moving Average


Intro. to Quantitative Social Science

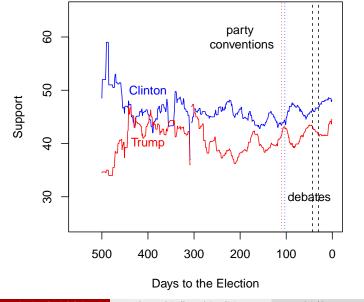
3-Day Moving Average

Intro. to Quantitative Social Science

2-Week Moving Average

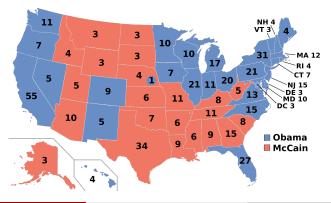
Intro. to Quantitative Social Science

Let's Add Some Informative Labels


• Candidate names:

text(400, 50, "Clinton", col = "blue")
text(400, 40, "Trump", col = "red")

Events:


Intro. to Quantitative Social Science

The Final Graph: 1-week Moving Average

Predicting US Presidential Election

- Electoral college system
 - must win an absolute majority of 538 electoral votes
 - 538 = 435 (House of Representatives) + 100 (Senators) + 3 (DC)
 - must win at least 270 votes
 - $\bullet\,$ nobody wins an absolute majority $\rightsquigarrow\,$ House of representatives
- Must predict the winner of each state

Intro. to Quantitative Social Science

Poll Prediction for the 2008 Election

• Election data: pres08.csv

Name	Description
state	abbreviated name of state
<pre>state.name</pre>	unabbreviated name of state
Obama	Obama's vote share (percentage)
McCain	McCain's vote share (percentage)
EV	number of electoral college votes for the state

• Polling data: polls08.csv

Name	Description
state	abbreviated name of state in which poll was conducted
Obama	predicted support for Obama (percentage)
McCain	predicted support for McCain (percentage)
Pollster	name of organization conducting poll
middate	middate of the period when poll was conducted

_

_

- Predict the state-level support for each candidate using polls
- Allocate the electoral college votes of that state to its predicted winner
- Aggregate the electoral college votes across states to determine the predicted winner
- Repeat this on each date

- Coding strategy: for any given date, do the following
 - I For each state, subset the polls conducted within it
 - Further subset the latest polls (there may be multiple polls conducted on the same day)
 - 3 Aaverage the latest polls to estimate the support for each candidate
 - 4 Allocate the electoral votes to the candidate who has greater support
 - S Repeat this for all states and aggregate the electoral votes

Some Preprocessing

```
## election results, by state
pres08 <- read.csv("data/pres08.csv")</pre>
## polling data
polls08 <- read.csv("data/polls08.csv")</pre>
## Obama's margin
polls08$margin <- polls08$Obama - polls08$McCain
pres08$margin <- pres08$Obama - pres08$McCain
## convert to a Date object
polls08$middate <- as.Date(polls08$middate)</pre>
## number of days to the election day
polls08$DaysToElection <- as.Date("2008-11-04") -</pre>
    polls08$middate
```

Poll Prediction for Each State

```
poll.pred <- rep(NA, 51) # initialize a vector place holder
## state names which the loop will iterate through
st.names <- unique(polls08$state)</pre>
## add labels for easy interpretation later on
names(poll.pred) <- as.character(st.names)</pre>
## loop across 50 states plus DC
for (i in 1:51){
    ## subset the ith state
    state.data <- subset(polls08,</pre>
                          subset = (state == st.names[i]))
    ## subset the latest polls within the state
    latest <- state.data$DaysToElection ==</pre>
        min(state.data$DaysToElection)
    ## compute the mean of latest polls and store it
    poll.pred[i] <- mean(state.data$margin[latest])</pre>
```

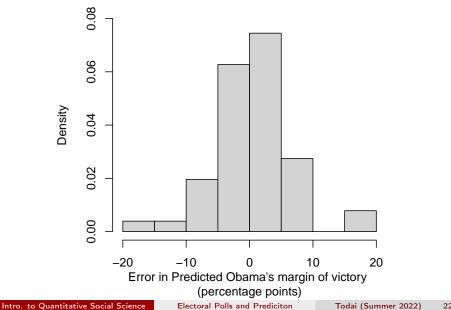
• prediction error = actual outcome - predicted outcome

errors <- pres08\$margin - poll.pred names(errors) <- st.names # add state names

Mean prediction error

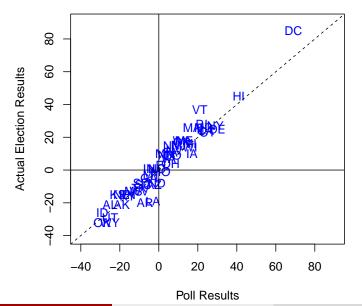
mean(errors) # mean prediction error
[1] 1.06

Root mean squared error


```
sqrt(mean(errors<sup>2</sup>))
## [1] 5.91
```

Histogram

```
hist(errors, freq = FALSE, ylim = c(0, 0.08),
    main = "Poll Prediction Error",
    xlab = "Error in Predicted Obama's margin of victory
(percentage points)")
```


Intro. to Quantitative Social Science

Poll Prediction Error

22/24

```
## type = "n" generates "empty" plot
plot(poll.pred, pres08$margin, type = "n", main = "",
     xlim = c(-40, 90), ylim = c(-40, 90).
     xlab = "Poll Results", ylab = "Actual Election Results")
## add state abbreviations
text(poll.pred, pres08$margin, pres08$state, col = "blue")
## 1.i.n.e.s
abline(a = 0, b = 1, lty = "dashed") # 45 degree line
abline(v = 0) # vertical line at 0
abline(h = 0) # horizontal line at 0
```


Intro. to Quantitative Social Science

Electoral Polls and Prediciton

24/24