Causation and Regression

Introduction to Quantitative Social Science

Kosuke Imai Harvard University / University of Tokyo

Summer 2022

Intro. to Quantitative Social Science

Causation and Regression

Todai (Summer 2022) 1 / 17

Women as Policy Makers

- Do women promote different policies than men?
- Observational studies: compare policies adopted by female politicians with those adopted by male politicians
- Randomized natural experiment:
 - one third of village council heads reserved for women
 - assigned at the level of Gram Panchayat (GP) since mid-1990s
 - each GP has multiple villages
- What does the effects of female politicians mean?
- Hypothesis: female politicians represent the interests of female voters
- Female voters complain about drinking water while male voters complain about irrigation

The Data

_

Name	Description
GP	An identifier for the Gram Panchayat (GP)
village	identifier for each village
reserved	binary variable indicating whether the GP was
	reserved for women leaders or not
female	binary variable indicating whether the GP had
	a female leader or not
irrigation	variable measuring the number of new or re-
	paired irrigation facilities in the village since
	the reserve policy started
water	variable measuring the number of new or re-
	paired drinking-water facilities in the village
	since the reserve policy started

women <- read.csv("data/women.csv")</pre>

• Does the reservation policy increase female politicians?

```
mean(women$female[women$reserved == 1])
## [1] 1
mean(women$female[women$reserved == 0])
## [1] 0.0748
```

Does it change the policy outcomes?

```
## drinking-water facilities
mean(women$water[women$reserved == 1]) -
    mean(women$water[women$reserved == 0])
## [1] 9.25
## irrigation facilities
mean(women$irrigation[women$reserved == 1]) -
    mean(women$irrigation[women$reserved == 0])
## [1] -0.369
```

Linear Regression Model

• Model:

- Y: dependent/outcome/response variable
- X: independent/explanatory variable, predictor
- (α, β) : coefficients (parameters of the model)
- ϵ : unobserved error/disturbance term (mean zero)
- Interpretation:
 - $\alpha + \beta X$: mean of Y given the value of X
 - α : the value of Y when X is zero
 - β : increase in Y associated with one unit increase in X

Least Squares

- Estimate the model parameters from the data
 - $(\hat{\alpha}, \hat{\beta})$: estimated coefficients
 - $\widehat{Y} = \hat{\alpha} + \hat{\beta}x$: predicted/fitted value
 - $\hat{\epsilon} = Y \hat{Y}$: residuals
- We obtain these estimates via the least squares method
- Minimize the sum of squared residuals (SSR):

$$SSR = \sum_{i=1}^{n} \hat{\epsilon}_i^2 = \sum_{i=1}^{n} (Y_i - \hat{\alpha} - \hat{\beta}X_i)^2$$

- This also minimizes the root mean squared error: RMSE = $\sqrt{\frac{1}{n}}$ SSR
- In R, use the lm() function and the coef() to extract the estimated coefficients

Slope Coefficient = Difference-in-Means Estimator

• Randomization enables a causal interpretation of estimated regression coefficient \rightsquigarrow this is not always the case

```
mean(women$water[women$reserved == 1]) -
   mean(women$water[women$reserved == 0])
## [1] 9.25
lm(water ~ reserved, data = women)
##
## Call:
## lm(formula = water ~ reserved, data = women)
##
## Coefficients:
## (Intercept) reserved
##
   14.74 9.25
```

Linear Regression with Multiple Predictors

• The model:

$$Y = \alpha + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p + \epsilon$$

• Sum of squared residuals (SSR):

SSR =
$$\sum_{i=1}^{n} \hat{\epsilon}_{i}^{2} = \sum_{i=1}^{n} (Y_{i} - \hat{\alpha} - \hat{\beta}_{1}X_{i1} - \hat{\beta}_{2}X_{i2} - \dots - \hat{\beta}_{p}X_{ip})^{2}$$

• The social pressure experiment revisited:

social <- read.csv("data/social.csv")
levels(social\$messages) # base level is `Civic'
NULL
fit <- lm(primary2008 ~ messages, data = social)</pre>

Randomization of Treatments Enables Causal Interpretation

• The lm() function automatically creates an indicator variable for each level of a factor variable

fit	t				
##					
##	Call:				
##	<pre>lm(formula = primary2008 ~ messages, data = social)</pre>				
##					
##	Coefficients:				
##	(Intercept)	messagesControl			
##	0.31454	-0.01790			
##	messagesHawthorne	messagesNeighbors			
##	0.00784	0.06341			

• The baseline category, the Intercept, is Civic Duty

• The predicted values give the average outcome under each condition

```
unique(social$messages)
## [1] "Civic Duty" "Hawthorne" "Control" "Neighbors"
predict(fit, newdata =
          data.frame(messages =
                        unique(social$messages)))
## 1 2 3
                      4
## 0.315 0.322 0.297 0.378
tapply(social$primary2008, social$messages, mean)
## Civic Duty Control Hawthorne Neighbors
       0.315 0.297 0.322
                                    0.378
##
```

• We can create an equivalent model by replacing the intercept with the indicator variable for the baseline treatment

lm(primary2008 ~ -1 + messages, data = social)

Heterogenous Effects by Interaction Terms

• The model:

$$Y = \alpha + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \epsilon$$

- One unit increase in $X_2 \rightsquigarrow$ the change in average Y associated with X_1 goes up by β_3
- Back to the social pressure example:

$$Y = \alpha + \beta_1$$
 primary 2004 + β_2 Neighbors +

 β_3 primary 2004 \cdot Neighbors $+ \epsilon$

Intro. to Quantitative Social Science

Causation and Regression

coef(fit.int) ## (Intercept) 0.2371 ## primary2004 ## 0.1487 ## ## messagesNeighbors ## 0.0693 primary2004:messagesNeighbors ## 0.0272

More Heterogeneity

• The model:

 $Y = \alpha + \beta_1 age + \beta_2 Neighbors + \beta_3 age \cdot Neighbors + \epsilon$

• Compute age:

social.neighbor\$age <- 2008 - social.neighbor\$yearofbirth</pre>

• Fit the model:

Intro. to Quantitative Social Science

Causation and Regression

• Create data frames with several values of age:

• Predict turnout for each value of age and compute average treatment effect:

```
## average treatment effect for age = 25, 45, 65, 85
ate.age <- predict(fit.age, newdata = age.neighbor) -
    predict(fit.age, newdata = age.control)
ate.age
## 1 2 3 4
## 0.0643 0.0768 0.0894 0.1020</pre>
```

Intro. to Quantitative Social Science

Causation and Regression

Regression with a Nonlinear Term

$$\begin{array}{ll} Y &=& \alpha + \beta_1 \mathsf{age} + \beta_2 \mathsf{age}^2 + \beta_3 \mathsf{Neighbors} \\ &+ \beta_4 \mathsf{age} \cdot \mathsf{Neighbors} + \beta_5 \mathsf{age}^2 \cdot \mathsf{Neighbors} + \epsilon \end{array}$$

```
fit.age2 <- lm(primary2008 ~ age + I(age^2) + messages +
                     age:messages + I(age<sup>2</sup>):messages,
                data = social.neighbor)
coef(fit.age2)
##
                    (Intercept)
                                                           age
                                                      1.17e-02
##
                      -9.70e-02
                       I(age<sup>2</sup>)
##
                                           messagesNeighbors
                      -7.39e-05
##
                                                     -5.28e-02
        age:messagesNeighbors I(age^2):messagesNeighbors
##
##
                       4.80e-03
                                                     -3.96e-05
```

Causation and Regression

Intro. to Quantitative Social Science

• Make prediction:

Plot the predicted turnout:

```
plot(25:85, yT.hat, type = "1", xlim = c(20, 90),
        ylim = c(0, 0.5), xlab = "Age",
        ylab = "Predicted turnout rate")
lines(x = 25:85, y = yC.hat, lty = "dashed")
text(40, 0.45, "Neighbors condition")
text(45, 0.15, "Control condition")
Intro. to Quantitative Social Science Causation and Regression Todai (Summer 2022)
```

16/17

Graph is Helpful

